Ensemble Processing

David Unger
Climate Prediction Center

Schematic illustration

Schematic example

DEFINITIONS:

$$F = Forecast$$
 $C = Climatology$ $b = Observation$

S = Standard deviation of forecast errors

$$S^2 = (\overline{F-b})^2$$

 $\sigma_{\rm f}$ =Standard deviation of forecasts

$$\sigma_{\rm f}^2 = \overline{(F-C)^2}$$

$$\sigma_b^2 = \overline{(b-C)^2}$$

$$E =$$
Ensemble Spread

$$E^2 = \sum (F - F_m)^2$$

Regression=Bias Correction and Standardization

$$Z = \frac{(F - \bar{F})}{(\sigma_{\rm F})}$$

$$\hat{Z} = RZ$$

$$\hat{F} = \hat{Z} \sigma_{\rm C} + C$$

Regression relationships

$$\sigma_{\rm fm} = R_{\rm fm} \sigma_{\rm c}$$

Standard deviation of forecasts

$$S_{\rm fm} = \sigma_{\rm c} \sqrt{1 - R_{\rm fm}^2}$$

Standard deviation of forecast errors

$$\sigma_{\rm fm}^2 + S_{\rm fm}^2 = R_{\rm fm}^2 \sigma_{\rm fm}^2 + \sigma_{\rm c}^2 (1 - R_{\rm fm}^2)$$

$$\sigma_{\rm fm}^2 + S_{\rm fm}^2 = \sigma_{\rm c}^2$$

Forecast and error variance sum to climatological variance

Schematic example

Kernel Math

- Ensemble Spread, E, and S_z, are constrained.
 - Depend on R and R_m
 - Also depends on the standard deviation of f and $f_{\rm m}$.

Variance Relationships

- Explained Variance = $R^2\sigma_c^2$
- Unexplained Variance S_{fm}² divides into 2 parts:
 - 1) Ensemble Spread (E²) (Variable)
 - 2) Residual Variance (Fixed) (S_z²)

$$S_z^{2} \le S_{fm}^2 : S_{fm}^2 = S_z^2 + E^2$$

Kernel mathematics

$$E^2 = \sum_{z} (f - fm)^2$$

 $S_z = \text{Conditional standard dev.}$
 $S_f^2 = S_{fm}^2 + E^2$
 $\sigma_{Total}^2 = \sigma_f^2 = \sigma_f^2 + S_z^2$

$$S_z^2 + E^2 = S_{fm}^2$$

 $S_z^2 = S_{fm}^2 - E^2$

Optimum Spread

- Regression gives one candidate for an optimum spread value, E²
- E² depends on the skill difference between the individual ensemble members and the ensemble mean.
- We then can calculate the unexplained variance not accounted for by the spread.

Optimum ensemble spread?

$$S_{\rm f}^2 = S_{\rm fm}^2 + E^2$$

 $E^2 = S_{\rm f}^2 - S_{\rm fm}^2$

$$S_{\rm f} = \sigma_{\rm c} \sqrt{(1 - R_{\rm f}^2)}$$

$$S_{\rm fm} = \sigma_{\rm c} \sqrt{(1 - R_{\rm fm}^2)}$$

$$E^2 = \sigma_{\rm c}^2 (R_{\rm fm}^2 - R_{\rm f}^2)$$

Minimum Forecast Error Variance

$$E^2 = \sigma_{\rm c}^2 (R_{\rm fm}^2 - R_{\rm f}^2)$$

$$S_{z}^{2} = S_{fm}^{2} - E^{2}$$

$$S_z^2 = \sigma_c^2 (1 - R_{fm}^2) - \sigma_c^2 (R_{fm}^2 - R_f^2)$$

$$S_z^2 = \sigma_c^2 (1 - 2R_{\rm fm}^2 + R_{\rm f}^2)$$

Effective Correlation

$$S_z^2 = \sigma_c^2 (1 - 2R_{fm}^2 + R_f^2)$$

$$S_z^2 = \sigma_c^2 (1 - R_z^2)$$

$$R_{\rm z}^2 = 2 R_{\rm fm}^2 - R_{\rm f}^2$$

Schematic example

Forecast computation

$$Z_{i} = \frac{(F_{i} - \overline{F})}{(\sigma_{F})}$$

$$\hat{Z}_{i} = R_{z}Z$$

$$\overset{*}{F}_{i} = \hat{Z}_{i} \sigma_{C} + C$$

$$\hat{F}_{i} = (\hat{F}_{i} - F_{m}) \frac{\hat{E}}{\overline{E}} + F_{m}$$

Kernel vs. Mean

$R_z = .97$, $R_{fm} = .94$, $R_i = .90$

R_z =.93, R_{fm} =.87, R_f =.30

R_z =.85, R_{fm} =.67, R_i =.41

R_z =.62, R_{fm} =.46, R_f =.20

Weighting

$$w_{i} = \frac{R_{i}}{(1 - R_{i})}$$

$$wt_{i} = \frac{w_{i}}{\left(\sum_{i} (w_{i})\right)}$$

$$R=.9: 9=\frac{.9}{(1-.9)}$$
, $R=.8: 5=\frac{.8}{(1-.8)}$
 $9+5=14$

$$.64 = \frac{9}{14}$$
 $.36 = \frac{5}{14}$

3 members + 1 forecast

3 members half wt. + 1fcst

Nino 3.4 Consolidation

SST 3.4 Consolidation

6- Mo. Lead, Rz=.63,Rm=.54,R=.44

Nino 3.4 SST

6-Mo. Lead, 1981-2003, All Start times

Model	CRPSS	MAE (C)	Bias (C)
CFS	.293	.541	058
CFS Mean	.133	.677	.061
CA	.339	.526	.019
CA Mean	.296	.559	067
CON	.324	.380	016
CON Mean	.349	.366	.022

Reliability CFS

Reliability CA

Reliability Consolidation

Requirements

- Forecast Mean
- Standard deviation of individual members
- 3. Standard deviation of individual member errors
- 4. Standard deviation of ensemble mean
- 5. Standard deviation of ensemble mean errors
- Observed mean
- 7. Standard deviation of observations
- (Forecast anomaly * observed anomaly)
- 9. (Ensemble mean anomaly * obs anomaly)
- 10. Ensemble Spread

Advantages and disadvantages

Kernel Method

Advantages:

- Uses all ensemble information
- One equation set produces forecasts for many thresholds.
 - Handles irregular distributions.

Disadvantages

- Often is very close to a simple ensemble mean
- Can't handle regime dependent bias

Finish Line